Medial commutativity

نویسندگان

  • Kosta Dosen
  • Zoran Petric
چکیده

It is shown that all the assumptions for symmetric monoidal categories flow out of a unifying principle involving natural isomorphisms of the type (A ∧B) ∧ (C ∧D) → (A ∧ C) ∧ (B ∧D), called medial commutativity. Medial commutativity in the presence of the unit object enables us to define associativity and commutativity natural isomorphisms. In particular, Mac Lane’s pentagonal and hexagonal coherence conditions for associativity and commutativity are derived from the preservation up to a natural isomorphism of medial commutativity by the biendofunctor ∧. This preservation boils down to an isomorphic representation of the YangBaxter equation of symmetric and braid groups. The assumptions of monoidal categories, and in particular Mac Lane’s pentagonal coherence condition, are explained in the absence of commutativity, and also of the unit object, by a similar preservation of associativity by the biendofunctor ∧. In the final section one finds coherence conditions for medial commutativity in the absence of the unit object. These conditions are obtained by taking the direct product of the symmetric groups S(n i ) for 0 ≤ i ≤ n. Mathematics Subject Classification (2000): 18D10, 19D23, 20B30

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : m at h / 06 10 93 4 v 5 [ m at h . C T ] 2 8 M ar 2 00 7 Medial Commutativity

It is shown that all the assumptions for symmetric monoidal categories flow out of a unifying principle involving natural isomorphisms of the type (A ∧B) ∧ (C ∧D) → (A ∧ C) ∧ (B ∧D), called medial commutativity. Medial commutativity in the presence of the unit object enables us to define associativity and commutativity natural isomorphisms. In particular, Mac Lane’s pentagonal and hexagonal coh...

متن کامل

ar X iv : m at h / 06 10 93 4 v 2 [ m at h . C T ] 3 1 O ct 2 00 6 Medial Commutativity

It is shown that all the assumptions for symmetric monoidal categories flow out of a unifying principle involving natural isomorphisms of the type (A ∧B) ∧ (C ∧D) → (A ∧ C) ∧ (B ∧D), called medial commutativity. Medial commutativity in the presence of the unit object enables us to define associativity and commutativity natural isomorphisms. In particular, Mac Lane’s pentagonal and hexagonal coh...

متن کامل

ar X iv : m at h / 06 10 93 4 v 6 [ m at h . C T ] 4 A pr 2 00 7 Medial Commutativity

It is shown that all the assumptions for symmetric monoidal categories flow out of a unifying principle involving natural isomorphisms of the type (A ∧B) ∧ (C ∧D) → (A ∧ C) ∧ (B ∧D), called medial commutativity. Medial commutativity in the presence of the unit object enables us to define associativity and commutativity natural isomorphisms. In particular, Mac Lane’s pentagonal and hexagonal coh...

متن کامل

ar X iv : m at h / 06 10 93 4 v 4 [ m at h . C T ] 9 J an 2 00 7 Medial Commutativity

It is shown that all the assumptions for symmetric monoidal categories flow out of a unifying principle involving natural isomorphisms of the type (A ∧B) ∧ (C ∧D) → (A ∧ C) ∧ (B ∧D), called medial commutativity. Medial commutativity in the presence of the unit object enables us to define associativity and commutativity natural isomorphisms. In particular, Mac Lane’s pentagonal and hexagonal coh...

متن کامل

Finite groups with three relative commutativity degrees

‎‎For a finite group $G$ and a subgroup $H$ of $G$‎, ‎the relative commutativity degree of $H$ in $G$‎, ‎denoted by $d(H,G)$‎, ‎is the probability that an element of $H$ commutes with an element of $G$‎. ‎Let $mathcal{D}(G)={d(H,G):Hleq G}$ be the set of all relative commutativity degrees of subgroups of $G$‎. ‎It is shown that a finite group $G$ admits three relative commutativity degrees if a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Ann. Pure Appl. Logic

دوره 146  شماره 

صفحات  -

تاریخ انتشار 2007